简单易懂,事半功倍。
提高接受率,人人国自然!

利用BloodSpot数据库研究急性髓细胞白血病(AML)方法

研究acute myelocytic leukemia,AML,你肯定用得上BloodSpot。网址:http://servers.binf.ku.dk/bloodspot/

数据介绍

BloodSpot是一个数据库,提供健康和恶性造血中基因和基因特征的基因表达谱,包括来自人类和小鼠的数据。除了显示集成表达图的默认图外,还有两个额外的可视化级别; 一个交互式树,显示样本之间的层次关系,以及Kaplan-Meier生存图。数据库被细分为几个可供浏览的数据集。

数据来源

Datasets are organized by organism of origin and disease status, and includes human healthy hematopoietic cells, human leukemia and healthy mouse hematopoietic cells. All datasets available were generated using oligonucleotide microarray chips, except for one mouse dataset that was generated using RNA-Seq.

There are 23 different datasets to choose from:

Normal human hematopoiesis with AMLs
Normal human hematopoiesis (Normal human hematopoiesis (DMAP))
Normal human hematopoiesis (HemaExplorer)
BloodPool: AML samples with normal cells
BloodPool: AML samples vs. normal cells
Leukemia MILE study
AML TCGA dataset
AML TCGA dataset vs. normal
AML Normal Karyotype
AML Normal Karyotype vs. normal
AML vs. normal
Mouse normal hematopoietic system
Mouse immgen abT cells
Mouse immgen Activated T cells
Mouse immgen B cells
Mouse immgen Dentritic cells
Mouse immgen gdT cells
Mouse immgen Key populations
Mouse immgen MFs Monocytes_Neutrophiles
Mouse immgen NK cells
Mouse immgen Stem and progenitor cells
Mouse immgen Stromal cells
Mouse normal (RNA-Seq)

One feature of BloodSpot is BloodPool, an aggregated and integrated dataset grouping the results of multiple studies focusing on AML. By means of our batch batch correction methods this dataset can be used to study gene expression in AML in comparison with healthy corresponding cells. BloodPool can be selected as any of the other available datasets.

操作演示

 

 

 

 

 

 

除特别注明外,本站所有文章均为SCI666原创,转载请注明出处,谢谢。sci666 » 利用BloodSpot数据库研究急性髓细胞白血病(AML)方法

分享到: 更多 (0)

评论 抢沙发

  • QQ号
  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

SCI666 学习、交流、分享

生信分析交流群综合科研交流群
切换注册

登录

忘记密码 ?

您也可以使用第三方帐号快捷登录

切换登录

注册

我们将发送一封验证邮件至你的邮箱, 请正确填写以完成账号注册和激活